
Statistics 210A Lecture 6 Notes

Daniel Raban

September 14, 2021

1 Basu’s Theorem, Rao-Blackwell, and Unbiased Estimation

1.1 Recap: Minimal sufficient, complete, and ancillary statistics

Last time we discussed minimal sufficient statistics, which are

1) T (X) is sufficient.

2) For any other sufficient statistic S(X), T (X) = f(S(X)) for some f (a.s. in P).

For an s-parameter exponential family with pθ(x) = eη(θ)
>T (x)−B(θ)h(x), T (X) is minimal

if
span{η(θ1)− η(θ2) : θ1, θ2 ∈ Θ} = Rs.

We also discussed complete statistics, which have the property that

Eθ[f(T (x))] = θ ∀0 =⇒ f(T (x))
a.s.
= 0.

We saw that in an exponential family, T (X) is complete if Ξ contains an open set, but this
is not a necessary condition. In the following picture, T (X) will be complete in exponential
families A and B but not necessarily in family C.
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Family B is usually called a curved exponential family since the parameter space is a
lower-dimensional space within the natural parameter space.

We saw that completeness is an upgrading of minimality for sufficient statistics:

Theorem 1.1. Complete sufficient statistics are minimal.

We also introduced ancillary statistics V (X), where the distribution of V doesn’t
depend on θ.

1.2 Basu’s theorem

Theorem 1.2 (Basu). If T (X) is complete sufficient and V (X) is ancillary for P, then
V (X)q T (X) for all θ ∈ Θ.

Proof. We want to show that for all sets A,B and for all θ,

Pθ(V ∈ A, T ∈ B) = Pθ(V ∈ A)Pθ(T ∈ B).

This is equivalent to showing

Pθ(V ∈ A | T ∈ B) = Pθ(V ∈ A)

whenever Pθ(T ∈ B) > 0. Let

qA(T (X)) = P(V ∈ A | T (X)), pA = P(V ∈ A).

Note that qA, pA are independent of θ. We have

Eθ[qA(T (X))− pA] = pA − pA = 0,

so by completeness of T (X), qA(T (X))
a.s.
= pA.

Remark 1.1. The hypotheses of Basu’s theorem apply to a model, whereas the conclusions
apply to each distribution. So sometimes, to prove that statistics are independent, we can
apply Basu’s theorem to submodels of the original model.

Example 1.1. Let X1, . . . , Xn
iid∼ N(µ, σ2) with µ ∈ R and σ2 > 0. We want to show

that X = 1
n

∑n
i=1Xi q S2 = 1

n−1
∑n

i=1(Xi − X)2. Let Qσ2 = {N(µ, σ2)n : µ ∈ R}. In

this model, X is complete sufficient (which we can verify by writing this as an exponential

family). To show that S2 is ancillary, let Zi = Xi − µ
iid∼ N(0, σ2) (not that these are not

statistics, since they suppose the value of µ). Then

S2 =
1

n− 1

n∑
i=1

(Xi −X)2 =
1

n− 1

n∑
i=1

(Zi − Z)2︸ ︷︷ ︸
∼ σ2

n−1
χ2
n−1

has distribution not depending on θ. So by Basu’s theorem, X q S2 for all µ, σ2. Take
note that we split the model into submodels where σ2 was fixed.
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1.3 The Rao-Blackwell Theorem

Why should we use sufficient statistics or complete statistics T (X)? The idea is that if
θ only depends on T (X), then using anything else would be adding extra randomness, or
“noise,” that obscures our result. To talk about what effect this has on our loss functions,
let’s introduce a condition on our loss functions.

Definition 1.1. A function f(x) is convex if for any γ ∈ (0, 1),

f(γx+ (1− γ)y) ≤ γf(x) + (1− γ)f(y).

The function f is strictly convex if the inequality is strict (<).

Jensen’s inequality says that this extends to general averages, not just the average of
two points.

Theorem 1.3 (Jensen’s inequality). If f is convex, then

f(E[X]) ≤ E[f(X)].

If f is strictly convex, we get <, unless X
a.s.
= c.

Here, X could be a random vector.
If the loss L(θ; d) is convex in d, then we lose by adding extra noise. Jensen’s inequality

tells us that more the distribution spreads out, the more the average risk increases.

Theorem 1.4 (Rao-Blackwell). Assume T (X) sufficient and δ(X) is an estimator for
g(θ). Let δ(T (X)) = E[δ(X) | T (X)]. If L(θ; d) is convex, then

R(θ; δ) ≤ R(θ; δ) ∀δ.

If L(θ; d) is strictly convex, then the inequality is strict, unless δ
a.s.
= δ.

Proof. The risk is

R(θ; δ) = Eθ[L(θ;E(δ | T ))]

By Jensen’s inequality (applied to the conditional expectation given T ),

≤ Eθ[E[L(θ; δ) | T ]]

= Eθ[L(θ; δ)]

with strict inequality for strict convexity unless δ
a.s.
= δ.

Remark 1.2. Where did we use sufficiency in the proof? We used it when defining δ,
where the conditional expectation should not depend on θ.

Turning δ into δ is called Rao-Blackwellization.
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1.4 Unbiased estimation

Definition 1.2. The bias of an estimator δ(X) for g(θ) is

Biasθ(δ(X)) = Eθ δ(X)− g(θ).

The statistic δ(X) is unbiased for g(θ) if Eθ[δ(X)] = g(θ) for all θ.

An unbiased estimator may not always exist.

Definition 1.3. We say g(θ) is U-estimable if there is an estimator δ(X) that is unbiased
for g(θ).

Definition 1.4. An estimator δ(X) is uniform minimum variance unbiased (UMVU)
if for any other unbiased δ̃, Varθ(δ(X)) ≤ Varθ(δ̃(X)).

We could equivalently say MSE(θ; δ) ≤ MSE(θ; δ̃).

Theorem 1.5 (Lehmann-Scheffé). Suppose T (X) is complete sufficient for P = {Pθ : θ ∈
Θ}. Then for any U -estimable function g(θ), there is an a.s. unique UMVU estimator of
the form δ(T (X)).

Proof. Assume δ0(X) is unbiased for g(θ). Then define

δ(T ) = E[δ0 | T ].

This is unbiased because

Eθ[δ(T )] = Eθ[E[δ0 | T ]] = E[δ0] = g(θ).

If δ̃(T ) is unbiased, then E[δ(T )− δ̃(T )] = 0 for all θ. So by completeness, δ(T )
a.s.
= δ̃(T ).

Now suppose δ∗(X) is unbiased. By Rao-Blackwell,

MSE(θ;E[δ∗ | T ]︸ ︷︷ ︸
=δ

) ≤ MSE(θ; δ∗).

Remark 1.3. The picture is the same for any convex loss, not just the mean squared error.
For strictly convex loss, the unique UMVU has strictly less loss than any other unbiased
estimator.

Remark 1.4. Unbiased estimators are not always the best, but this shows that there is
at least a best one.

How do we find an unbiased estimator? Assume T is complete sufficient. We now have
two options:

1. Find an unbiased estimator δ(T ) which is a function of T .
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2. Find any unbiased estimator δ0(X) and Rao-Blackwellize it.

Example 1.2 (German tank problem1). Let X1, . . . , Xn
iid∼ U [0, θ] with θ > 0.

p(x) =

n∏
i=1

p(1)(xi)

=

n∏
i=1

1{0≤xi≤θ}
1

θ

=
1

θn
1{0≤X(n)≤θ}.

Is the maximum complete sufficient?

Pθ(X(n) ≤ t) =

(
t

θ
∧ 1

)n
=

(
t

θ

)n
∧ 1,

so the density is

pθ(t) =
d

dt
Pθ(X(n) ≤ t)

= n
tn−1

θn
1{t≤θ}.

Suppose that for all θ > 0,

0 = Eθ[f(T )] =
n

θn

∫ θ

0
f(t)tn−1 dt.

Then

0 =

∫ θ

0
f(t)tn−1 dt,

so differentiating with respect to θ tells us that

f(θ)θn−1 = 0

for all θ > 0.
Let’s calculate

Eθ[X(n)] =
n

θn

∫ θ

0
t · tn−1 dt

1Imagine you’re hiding in the bushes in World War II, and you count the serial numbers. You observe
the largest serial number to try to determine the number of German tanks.
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=
n

θn(n+ 1)
[tn+1]θ0

=
n

n+ 1
θ.

So we can just get an unbiased estimator via

Eθ
[
n+ 1

n
X(n)

]
= θ.

Another way to get an unbiased estimator is to use Eθ[2X1] = θ. Then you can show
that

E[2Xi | X(n)] =
n+ 1

n
X(n).
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